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We use the lubrication approximation to investigate the steady two-dimensional flow
of a thin film of viscous fluid on the outside of a rigid circular cylinder that is rotating
about its (horizontal) axis. Primarily we are concerned with the flow that ensues when
fluid is supplied continuously as a ‘curtain’ from above the cylinder, so that it flows
round the cylinder and eventually falls off near the bottom. This problem may be
thought of as a ‘hybrid’ of the two classical problems studied by Nusselt (1916a,b)
and Moffatt (1977), concerning, respectively, flow on a stationary cylinder with a
prescribed supply flux, and flow on a rotating cylinder when the supply flux is zero.
For all these problems there are indeterminacies in the steady lubrication solution;
we present a variety of possible solutions, including both ‘full-film’ and ‘partial-film’
solutions, and solutions that involve smooth ‘jumps’ in the free-surface profile. We
show, for example, that stagnation points can occur in the flow, that solutions exist
that do not have top-to-bottom symmetry, that in curtain flows the curtain generally
takes a characteristic ‘buckled’ shape, and that in full-film curtain flows there is always
some fluid that is ‘trapped’ near the rotating cylinder, never escaping as part of the
curtain that detaches at the bottom of the cylinder. Also we show that finite-thickness
films involving jumps cannot occur in these coating flows (though they are known to
occur in rimming flows).

1. Introduction
Applying a thin layer of fluid to a substrate is a process of great industrial

importance, occurring in, for example, the electronics industry, the paint industry and
the food industry. (See, for instance, the review by Ruschak 1985, the recent European
Coating Symposium Proceedings (Gaskell, Savage & Summers 1996; Bourgin 1998),
and the comprehensive volume edited by Kistler & Schweizer (1997).) Many different
coating devices have been developed, and quite commonly these involve flow over
rotating cylindrical rollers; it is flows of this general form that are analysed in the
present work. Essentially two different arrangements are discussed. In one the fluid
is considered to be supplied (at a prescribed flux) as a ‘curtain’ incident on a solid
cylinder that is rotating about its horizontal axis; the curtain comes from above
the highest point of the cylinder, so that the fluid flows round the cylinder and
eventually falls off near the bottom. The other arrangement involves a fixed mass of
fluid on a horizontal rotating cylinder, with the film thickness finite everywhere. We
take the fluid to be Newtonian and incompressible, and we take the fluid film to be
thin, so that the lubrication approximation to the Navier–Stokes equations and the
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Figure 1. Examples of thin viscous film flows on a rotating cylinder. In (a) the film is of finite
thickness everywhere; in (b) the fluid is supplied as a curtain from above.

boundary conditions is appropriate. Only steady, two-dimensional flow is considered,
and surface-tension effects are neglected.

The curtain problem may be thought of as a ‘hybrid’ of the two well-known thin-
film problems considered in the classical studies of Nusselt (1916a,b) and Moffatt
(1977). Nusselt considered the case when there is a prescribed supply flux incident on
a stationary cylinder; he showed, in particular, that the thickness of the film varies
as | cos θ|−1/3, where θ is the angle measured round the cylinder (as in figure 1).
Thus the film thickness becomes infinite at the top (θ = 1

2
π) and bottom (θ = − 1

2
π)

of the cylinder; these singularities may crudely be interpreted as representing the
fluid falling onto and falling off the cylinder (though of course the lubrication
approximation breaks down near θ = ± 1

2
π). Moffatt considered flow of a fixed mass

of fluid on a rotating cylinder, the film thickness in this case being finite for all θ.
In particular, he determined the maximum weight of fluid that can be kept on the
cylinder for a given rotation rate.

For the hybrid problem we present a variety of possible profiles of the free surface
of the fluid; we highlight a non-uniqueness in the solution (akin to those encountered
in other thin-film flows of this sort), namely that prescribing the supply flux and
the rotation rate is not sufficient to determine the solution completely. Thus extra
conditions (such as, for example, the specification of the film thickness at some
prescribed point) would be necessary to determine a unique solution.

In fact, it will emerge that several different types of solution are possible, and it is
useful to establish some terminology immediately. A full film is one that wets all the
cylinder, whereas a partial film is one that wets only part of it. Also a solution will
be described as a jump solution if there is a rapid (but continuous) change in the film
thickness at some point.
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We deal here only with flow on the outside of a cylinder (‘coating flow’). Other
studies of such flows include those of Campanella & Cerro (1984) (who considered
the case when the rotating cylinder is partially submerged in a bath of fluid),
Preziosi & Joseph (1988) (who considered the axial variation of the flow), Hansen &
Kelmanson (1994) (who performed a numerical study of Stokes flow on a cylinder),
and Kelmanson (1995) (who extended Moffatt’s thin-film analysis to include certain
higher-order terms); all these papers deal only with ‘non-curtain’ films. Problems
concerning flow on the inside of a cylinder (‘rimming flow’) have also been considered
extensively, by, for example, Deiber & Cerro (1976), Ruschak & Scriven (1976), Orr &
Scriven (1978), Preziosi & Joseph (1988), Johnson (1988), Wilson & Williams (1997)
and O’Brien & Gath (1998).

2. Governing equations
We consider two-dimensional arrangements of the type indicated in figure 1, depict-

ing examples of films of Newtonian fluid of constant density ρ and viscosity µ flowing
on the exterior of a circular cylinder of radius R rotating in a counter-clockwise sense
about its horizontal axis at uniform angular speed Ω (so that the circumferential
speed is U = RΩ). Figure 1(a) shows a case where the film is of finite non-zero
thickness everywhere, and figure 1(b) shows a case in which fluid is supplied as a
curtain; cases involving, for example, partial films are also included in the analysis.

Referred to polar coordinates r, θ with origin at the cylinder’s axis and with θ
measured counter-clockwise from the horizontal, we take the free surface of the fluid
to be at r = R+ h(θ), the film thickness being denoted by h(θ). We will consider only
thin films for which δ � 1, where δ := h0/R, with h0 denoting a characteristic film
thickness. Then the lubrication approximation leads to the equation

νurr = g cos θ (1)

for the azimuthal velocity component u(r, θ), together with the boundary conditions

u = U on r = R, (2)

ur = 0 on r = R + h(θ), (3)

where g denotes gravitational acceleration, ν = µ/ρ, and suffixes denote partial
differentiation. Thus

u = U − g cos θ

2ν
(2hy − y2), (4)

where y is a normal coordinate defined by

y = r − R (5)

(so that y > 0 for flow on the exterior of the cylinder). The flux Q of fluid per unit
axial length crossing a station θ = constant (in the direction of increasing θ) is

Q =

∫ h

0

u dy = Uh− gh3

3ν
cos θ. (6)

As the flow is steady we have ∂Q/∂θ = 0, so that Q(θ) must be (piecewise) constant.
The fact that h and u depend on θ only through cos θ shows that the flow has
top-to-bottom symmetry, at least when the film is full and does not involve a jump.
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The stream function ψ, satisfying u = ψy , is given by

ψ = Uy − g cos θ

6ν
(3h− y)y2, (7)

if the normalization ψ = 0 on r = R (y = 0) is used. On the free surface y = h(θ) we
then have ψ = Q. Also the free-surface velocity us(θ) := u(R + h, θ) is given by

us(θ) = U − gh2

2ν
cos θ. (8)

In a situation of the type shown in figure 1(b) we suppose that a fluid ‘curtain’
(of prescribed flux QS > 0) falls onto the cylinder from above, and a corresponding
curtain detaches from the cylinder near the bottom. If the two free surfaces of the
curtains correspond to ψ = QR and ψ = QL (the suffixes R and L referring to right
and left in the figures), then a global mass balance gives

QL − QR = QS. (9)

3. Solution for a stationary cylinder (U = 0)
For the special case of a stationary cylinder (U = 0) there is no steady solution of

the type shown in figure 1(a), but curtain flows of the type shown in figure 1(b) are
possible. For such a flow we may write

Q(θ) =

{
(1− k)QS if cos θ < 0

−kQS if cos θ > 0,
(10)

where k is a constant satisfying 0 < k < 1, so that QL = (1− k)QS (> 0), QR = −kQS

(< 0), and (9) is satisfied. (The sign difference here arises because when U = 0 the
flux is everywhere downwards, and so it is in the direction of increasing θ on the left
of the cylinder but is in the direction of decreasing θ on the right.) The free-surface
profile is then given from (6) by

h(θ) =

(−3νQ(θ)

g cos θ

)1/3

, (11)

or, in non-dimensional form,

h̃ =

(
3
[
k −H(− cos θ)

]
cos θ

)1/3

, (12)

where h̃ = (g/νQS)1/3h, and H(·) denotes the Heaviside unit-step function. We note
that this solution does not in general have left-to-right symmetry; however, the
solution for a given k is the mirror image of the solution obtained by replacing k by
1− k.

The constant k, which is a measure of the relative amount of fluid that goes round
each side of the cylinder, is not determined by the present theory, so (12) represents
a one-parameter family of possible (steady) solutions. Prescribing the supply flux
QS alone is not sufficient to determine the solution uniquely; however, additional
information, such as (for example) a specification of the film thickness at some
prescribed point, would be sufficient to render a unique solution. This indeterminacy
is akin to the well-known indeterminacy occurring in forward roll coating between
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Figure 2. The solution (12) for thin-film flow round a stationary cylinder, drawn for
the case k = 1

9
.

two rollers, when a fluid film ‘splits’, with some fluid attaching to one roller and some
to the other; again lubrication theory is unable to predict how much goes round each,
unless additional conditions are imposed. In drag-out problems of the type considered
by Van Rossum (1958), Tuck (1983) and Tuck, Bentwich & Van der Hoek (1983),
for example, there is again an indeterminacy, but of a somewhat different form. In
these problems it is the flux of fluid carried up by the substrate that is unknown
a priori , and there is a different solution for each value of this flux. Tuck (1983)
provides a little historical background on this difficulty, saying that there is a ‘varied
and sometimes apparently contradictory literature on the problem’. Tuck (1983) and
Tuck et al. (1983) quote a suggestion of Deryagin that in practice the film will take
up a thickness that will maximize the flux. In the present problem, on the other hand,
the flux QS is prescribed; it is the ‘split’ of this between QR and QL that has to be
determined by alternative means.

Figure 2 shows an example of the solution (12), drawn for the case k = 1
9

(the
film thickness then being such that h(π) = 2h(0)). Nusselt’s (1916a,b) familiar classical
solution corresponds to the particular case k = 1

2
, so that QL = −QR = 1

2
QS and

hence

h(θ) =

(
3νQS

2g| cos θ|
)1/3

, (13)

which has left-to-right symmetry.

4. Flow on a rotating cylinder (U 6= 0): qualitative features
4.1. Solution structure

From now on we consider the general case of a rotating cylinder (with U > 0). Here
we mainly describe mathematical features of the solution, obtaining general results
for all of the cases considered subsequently; in later sections we give more details of
possible physical interpretations.
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Figure 3. Typical plots of f(h, Q) in equation (20) as a function of h, for different values of the
flux Q: (a) Q 6 0, (b) 0 < Q < 2

3
, (c) Q = 2

3
, and (d) Q > 2

3
.

We non-dimensionalize using the scheme

y = Ly∗, h = Lh∗, u = Uu∗, us = Uu∗s , ψ = ULψ∗, Q = ULQ∗, (14)

where

L = (νU/g)1/2. (15)

The star superscripts will be dropped immediately. We thus have

u = 1− 1
2

cos θ(2hy − y2), (16)

us(θ) = 1− 1
2

cos θh2, (17)

ψ = y − 1
6

cos θ(3h− y)y2, (18)

and from (6) the free-surface profile h(θ) is given by

cos θ = f(h), (19)

where

f(h, Q) = 3

(
h− Q
h3

)
. (20)

(The argument Q in f(h, Q) will be suppressed if no confusion can arise.) From
(18)–(20) we can obtain the useful identity

ψ − Q = (h− y)
[− 1 + 1

6
cos θ(2h2 + 2hy − y2)

]
. (21)

Typical plots of f(h) in (20) for different values of Q are shown in figure 3, for the
relevant domain h > 0; of course, by (19) only values of h such that |f(h)| 6 1 are
physically sensible. In all cases f(h) ∼ 3/h2 → 0+ as h → ∞. For Q 6 0 the function
f(h) decreases monotonically with h, satisfying f(h) ∼ −3Q/h3 → +∞ as h → 0 for
Q < 0 and satisfying f(h) ∼ 3/h2 → +∞ as h→ 0 for Q = 0. For Q > 0 the function
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f(h) has a maximum given by

f = fm =
4

9Q2
, θ = θc = cos−1 fm, h = hm =

3Q

2
(22)

(so the maxima for the different curves satisfy fm = 1/h2
m). Also f(h) = 0 when h = Q

(> 0), and f(h) ∼ −3Q/h3 → −∞ as h→ 0.
Depending on the value of Q, different branches of the above curves can be relevant;

it is useful to distinguish five cases, which we label I–V, as follows. For Q 6 0 the
only relevant branch is given by

I : h > h0, 0 < f(h) 6 1, |θ| < 1
2
π for Q 6 0, (23)

where h0 := h(0)
(
that is, h0 is the unique real root of f(h0) = 1

)
. This branch

represents the right-hand free surface in a curtain flow, with h extending from h0 at
θ = 0 to infinity at θ = ± 1

2
π.

For Q > 0 the curve has, in effect, two branches in h > 0, one on each side of the
maximum at h = hm; h remains finite on the branch in h 6 hm, but can become infinite
on the branch in h > hm. We let h1 := h(π), that is, we let h1 be the unique solution
of f(h1) = −1. For 0 < Q 6 2

3
there are two values h0 that satisfy f(h0) = 1; let these

be h01 and h02, say, with h01 6 hm 6 h02 <
√

3. Then the two relevant branches are
given by

II : h1 6 h 6 h01, −1 6 f(h) 6 1, all θ

III : h > h02, 0 < f(h) 6 1, |θ| < 1
2
π

 for 0 < Q 6 2
3
. (24)

For Q > 2
3

there is no value h0 that satisfies f(h0) = 1 (see figure 3); the two relevant
branches are given by

IV : h1 6 h 6 hm, −1 6 f(h) 6 fm, θc 6 |θ| 6 π
V : h > hm, 0 < f(h) 6 fm, θc 6 |θ| < 1

2
π

 for Q > 2
3
, (25)

with θc as in (22). Branch II corresponds to Moffatt’s (1977) solution, involving a
finite-thickness film encircling the cylinder. Branch III is somewhat similar to branch
I. Branch IV corresponds to the free surface on the left of the cylinder in a curtain
flow, while branch V corresponds to the left free surface of the curtain itself.

Figure 4 shows schematically how these different branches are to be interpreted
physically (but note that not all of the branches shown can occur together in a given
physical context). The explicit form for h(θ) on each of the branches is given in the
Appendix. The point A in figure 4 separates branch IV and branch V on the upper
curtain; this point is at θ = θc, where

θc = cos−1

(
4

9Q2
L

)
, (26)

which is obtained from (22) with Q = QL.
The case Q = 2

3
turns out to be ‘critical’ because its maximum is fm = 1, cor-

responding to cos θ = 1 and h = 1. Previous studies (for example, Moffatt 1977;
Johnson 1988; Preziosi & Joseph 1988) have been concerned mainly (or exclusively)
with solutions for which 0 < Q 6 2

3
(in the present notation), which represent films of

finite thickness, on the inside or the outside of a cylinder. The present study includes
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Figure 4. Schematic representation of the branches I,. . .,V of the solution h(θ) of (19) and (20). The
point A separates branch IV and branch V on the upper curtain. (Note that in a given physical
context not all of the branches shown can be relevant.)

solutions for values of Q outside this interval; these represent flows involving fluid
curtains.

Since by definition QR = Q(0) and QL = Q(π) we may use (19) and (20) to obtain

QR = h0 − 1
3
h3

0, QL = h1 + 1
3
h3

1, (27)

where again h0 = h(0) and h1 = h(π), the relevant branch of solutions being such that
QR 6

2
3
, h0 > 1; clearly QL must be positive. We note from (19) and (20) that for

QR <
2
3

the free-surface shape near θ = 0 is roughly parabolic in θ, with

h(θ) = h0 +
h3

0

6(h2
0 − 1)

θ2 +
h3

0(3h
4
0 − 4h2

0 − 1)

72(h2
0 − 1)3

θ4 + O(θ6) as θ → 0, (28)

while in the special case QR = 2
3

(h0 = 1) we have

h(θ) = 1± θ√
6

+ O(θ2) as θ → 0. (29)

The latter may be interpreted as representing either a locally linear free surface (for
a ‘jump’ solution), or a free surface with a corner (for a ‘non-jump’ solution).

Equations (19) and (20) predict that, for a curtain solution, far from the cylinder
the two free surfaces of the oncoming and detaching curtains have the forms

h =

(
3

1
2
π− |θ|

)1/2

− Q

2
+ O

((
1
2
π− |θ|)1/2

)
as |θ| → 1

2
π−, (30)

with Q = QR or Q = QL; however, the fact that h→∞ and |∂h/∂θ| → ∞ renders the
lubrication approximation invalid there (just as it does in Nusselt’s solution in the
case U = 0).



Thin-film flows on the outside of a rotating cylinder 37

Cylinder

(a)

Free
surface

Ω

(b)

Ω

(c)

Ω

Figure 5. Sketch of the forms of the streamlines near the stagnation points in the cases
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√
2, (b) QR = 1

3

√
2, and (c) 1

3

√
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2
3
.

4.2. Stagnation points

Stagnation points occur where ψy = 0 and ψθ = 0; they are saddle points of the

function ψ(y, θ)
(
that is, ψyyψθθ − ψ2

yθ < 0 there, at least for QR 6= 1
3

√
2
)
, so the

streamlines (the contours of ψ) are locally open curves.
If QR <

1
3

√
2 then for a branch-I or a branch-III solution there is a single ‘internal’

stagnation point, at θ = 0 and y = ys < h0, where

ys = h0 −
√
h2

0 − 2, (31)

with h0 >
√

3 on branch I and with h0 = h02 >
√

2 on branch III. The stagnation
streamline is given by ψ = ψs, where

ψs = ys − 1
6
(3h0 − ys)y

2
s , (32)

which with (31) may be written

ψs = h0 − 1
3
h3

0 + 1
3
(h2

0 − 2)3/2. (33)

One can show that near this stagnation point (that is, for y → ys and θ → 0)

ψ = ψs +

√
h2

0 − 2

2

[
θ2

3(h2
0 − 1)

− (y − ys)
2

]
+ o
(
θ2, (y − ys)

2
)
; (34)

thus the streamlines are locally hyperbolae, and the stagnation streamline is given by

y = ys ± 1√
3(h2

0 − 1)
θ +

3h3
0ys − 9h2

0 + 8

18(h2
0 − 1)(ys − h0)

θ2 + o(θ2) as θ → 0, (35)

so it comprises locally a pair of straight lines, at first order in θ. (Only two branches
of the curve ψ = ψs are relevant, the third being outside the fluid domain, in general.)
An example of a flow of this type is shown in figure 5(a).

For a branch-III profile with QR = 1
3

√
2 there is one stagnation point, which occurs

on the free surface at θ = 0, y = ys = h0 =
√

2. Near this point the stagnation
streamline comprises the lines

y =
√

2− |θ|+ O(θ2) as θ → 0 (36)
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and the free surface y = h, which is of the form

h =
√

2
(

1 + 1
3
θ2 + 1

12
θ4
)

+ O(θ6) as θ → 0. (37)

An example of a flow of this type is shown in figure 5(b).
For a branch-III profile with QR > 1

3

√
2 there are stagnation points on the free

surface at y = h = 3QR (>
√

2) and θ = ±θs, with

θs = cos−1

(
2

9Q2
R

)
. (38)

The stagnation streamline is given by ψ = QR, and from (21) with Q = QR we see
that it comprises the free surface y = h(θ) and the curve given by

y

h
= 1−

(
3− 6

h2 cos θ

)1/2

for 2 6 h2 cos θ 6 3, (39)

or equivalently

y

h
= 1−

(
h− 3QR

h− QR

)1/2

for
√

2 < 3QR 6 h. (40)

In the vicinity of the ‘upper’ stagnation point at y = h = 3QR, θ = θs, the free surface
has the form

h(θ) = 3QR + 9Q3
R sin θs(θ − θs) + 1

3
QR(81Q4

R − 1)(θ − θs)
2 + O(θ − θs)

3, (41)

and the branch of the stagnation streamline given by (40) has a semi-parabolic form:

y = 3QR − 9Q2
R( 1

2
sin θs)

1/2(θ − θs)
1/2 + 9Q3

R sin θs(θ − θs) + O(θ − θs)
3/2, (42)

the latter valid in θ > θs. The corresponding results for the ‘lower’ stagnation point
at θ = −θs are similar. An example of a flow of this type is shown in figure 5(c).

5. Films supplied by a fluid curtain
In this section we consider the general case QS 6= 0, that is, a non-zero (prescribed)

flux of fluid is falling onto and off the cylinder continuously, as shown in figure 1(b).

5.1. Full films

For a full film we use two of the f(h) curves to give the two sides of the curtain,
one curve corresponding to Q = QR and the other to Q = QL (with QL − QR = QS).
However, we must restrict QR by QR 6

2
3
, for otherwise the right side of the curtain

could not attain θ = 0; similarly we need QL >
2
3
, for otherwise the left side of the

curtain could not attain θ = π. Thus if we write

QL = 2
3

+ (1− k)QS, QR = 2
3
− kQS, (43)

where k is a constant, then the only cases that give physically sensible solutions
correspond to branches of curves for which 0 6 k 6 1.† The parameter k is a measure
of the relative fluxes of fluid round the two sides of the rotating cylinder. Again the
present theory does not determine a unique value for k, and additional information
would be required to render a unique solution.

† In the case of ‘non-jump’ solutions the values k = 0 and k = 1 lead to free surfaces that have
‘corners’, because QR = 2

3
and QL = 2

3
in these cases, respectively; cf. (29).
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The free surface ψ = QL comprises the two branches IV and V, with Q = QL.
If 0 < QR 6

2
3

then the free surface ψ = QR comprises branch III (with Q = QR),
whereas if QR 6 0 then it comprises branch I (with Q = QR). Note that QL > 0, so
the overall flow on the left side of the cylinder is always downwards (that is, in the
direction of increasing θ), but QR may be positive or negative, so the flow on the
right side may overall be upwards (with 1 < h0 <

√
3) or downwards (with h0 >

√
3).

On the right of the flow the film thickness is a minimum at θ = 0.
Examples of free-surface profiles of this type are shown in figure 6 for various

values of the flux parameters QR and QL (or equivalently QS and k). Figures 6(a) and
6(b) give examples with QS = 2 (and k = 23

24
and k = 1

12
, respectively), while figures

6(c) and 6(d) give examples with QS = 10 (and k = 29
30

and k = 2
3
, respectively). In fact

figure 1(b) also gives an example of such a profile, in the case QR = −1 and QL = 1,
so that QS = 2 and k = 5

6
. The effect of varying k is illustrated here: figures 1(b), 6(a)

and 6(b) have the same value of the supply flux QS, but are distinguished by their
different values of k.

It is seen in all these flows that, unlike in the Nusselt case, the curtain takes a
characteristic ‘buckled’ shape, due to the rotation of the cylinder; and according to
the present theory, this buckling is always in a direction opposite to that of the local
cylinder motion, that is, to the right in our pictures. The authors are not aware of
any reports of experimental or computational work directly relevant to this sort of
flow, so at this stage it is difficult to assess how realistic this prediction is.

Clearly regions of rather high curvature are predicted by this solution; in reality
surface-tension effects (which are ignored in the present analysis) could be significant
in these regions, and would tend to smooth out the free surface locally.

The part of the free surface y = h(θ) determined by Q = QR is well defined for
− 1

2
π < θ < 1

2
π, but, because of the ‘buckled’ shape of the curtain, the part determined

by ψ = QL is multivalued in the intervals θc 6 |θ| < 1
2
π, where again θ = θc is

the coordinate of the point labelled A in figure 4, defined in (26). Although this is
apparently reasonable from a physical point of view, our solution cannot represent
it in a consistent way, since the analysis here assumes that, for any θ, the space
0 < y < h is occupied fully by fluid – but this is not the case for θc 6 |θ| < 1

2
π,

there being three different values of h involved at any θ in this interval: one for the
free surface near the cylinder (the attached film), one for the left side of the curtain,
and one for the right side.† Thus there is a discontinuity on θ = θc, and the part of
the overall solution obtained using Q = QR (branch I or III) is strictly valid only for
|θ| < θc, while only branch IV can be used for the part of the solution with Q = QL.
At θ = θc we have h = 3

2
QL, and the free surface near this point is roughly parabolic,

with

h = 3
2
QL − 3

4
Q2

L(3 sin θc)
1/2(θ − θc)

1/2 + O(θ − θc). (44)

There is a stagnation point on the part of the free surface ψ = QL, but it is at
h = 3QL, θ = cos−1(2/9Q2

L) (= θ1, say), which is above the point A, in θ > θc, and so
is not relevant; similarly for a stagnation point at θ = −θ1.

Incidentally, one might have anticipated that the free-surface profile when U is

† One might ask, for example, what is the velocity u at a given point in this θ interval. The
answer is that there could be one, two or three values of u, depending on where the point is and
what choice is made for h. Indeed two values of u are predicted even for points in the space outside
the curtain, on its left side! The stated restrictions resolve this dilemma, but raise the questions of
what profile the curtain would really have, and how it would match onto the film into which it
plunges.
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(b)
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Figure 6. Some examples of curtain solutions, drawn for the cases (a) QR = − 5
4
, QL = 3

4
, QS = 2,

k = 23
24

, (b) QR = 1
2
, QL = 5

2
, QS = 2, k = 1

12
, (c) QR = −9, QL = 1, QS = 10, k = 29

30
, and (d)

QR = −6, QL = 4, QS = 10, k = 2
3
. The dots indicate the positions of stagnation points.
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Figure 7. Plot of the circulation flux QC defined in (45) as a function of the flux parameter QR

(which satisfies QR 6
2
3
).

small would differ from that in the Nusselt case with U = 0 only in a region near the
rotating cylinder, but that far from the cylinder the curtains in the two cases would
look somewhat similar. In fact according to the present solution the opposite is the
case, in the sense that the two profiles look rather similar near the cylinder, whereas
the oncoming curtains are different: when U = 0 the curtain can be symmetric about
θ = 1

2
π, with θ → 1

2
π± on its two sides (cf. (13)), but when U 6= 0 it lies entirely in

θ < 1
2
π sufficiently far from the cylinder, with θ → 1

2
π− on both sides of the curtain

(cf. (30)). Essentially the asymmetric buckling of the film occurs however slow the
cylinder’s rotation may be – and the slower the rotation, the further away from the
cylinder the buckling occurs.

A feature of these flows that is potentially of practical importance is that for any QR

(6 2
3
) there is always some fluid that is ‘trapped’ near the rotating cylinder, circulating

forever with the cylinder and never escaping as part of the curtain detaching at the
bottom. Denoting the flux of this circulating fluid by QC we have QC = ψs for
QR 6

1
3

√
2 and QC = QR for QR >

1
3

√
2; thus QC is given parametrically as a function

of QR by

QC =

{
h0 − 1

3
h3

0 + 1
3
(h2

0 − 2)3/2 if QR 6
1
3

√
2, h0 >

√
2

h0 − 1
3
h3

0 if 1
3

√
2 6 QR 6

2
3
, 1 < h0 6

√
2,

(45)

with QR and h0 related as in (27). A plot of QC as a function of QR is shown in figure
7. We have QC = 2

3
when QR = 2

3
, QC = 1

3

√
2 when QR = 1

3

√
2, QC ∼ 1

3
+
(
1− 1

2

√
3
)
QR

as QR → 0, and QC ∼ 1
2
(−3QR)−1/3 as QR → −∞. Note also that

2
3
− QS 6 QR 6 QC 6

2
3
6 QL 6

2
3

+ QS. (46)

Note that in the cases shown in figures 1(b), 6(a) and 6(b), for example, QC takes
different values (namely QC ' 0.26, QC ' 0.25 and QC = 1

2
, respectively), even though

the supply flux QS = 2 is the same in each. For QR >
1
3

√
2 (h0 6

√
2) all the fluid in

the oncoming curtain goes round the left side of the cylinder and into the detaching
curtain at the bottom, whereas for QR < 1

3

√
2 (h0 >

√
2) some fluid goes round the

left side and some round the right side. The surface velocity us at θ = 0, namely
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us(0) = 1 − 1
2
h2

0, will correspondingly be upwards or downwards (though, of course,
the fluid velocity at the cylinder y = 0 must always be upwards at θ = 0, by the
no-slip condition). Somewhat similar recirculating regions of ‘trapped’ fluid can occur
in many other thin-film flows, including flow in a slider bearing (see, for example,
Tuck & Bentwich 1983), flow in a slot coater (Durst & Wagner 1997), and flow in a
roll coater (Coyle 1997; Gaskell & Savage 1997).

Lastly we note that near θ = 1
2
π the free surface ψ = QL with h finite has the form

h = QL + 1
3
Q3

L( 1
2
π− θ) + O

(
( 1

2
π− θ)2

)
; (47)

more generally a streamline ψ = constant in the ‘attached’ film has the form

y = ψ + 1
6
ψ2(3QL − ψ)( 1

2
π− θ) + O

(
( 1

2
π− θ)2

)
(48)

near θ = 1
2
π.

5.2. Partial films

Johnson (1988) found solutions for rimming flows in which the fluid covers only part
of the cylinder (on the right), with the rest of the cylinder remaining dry (see his
figures 1(b) and 8); we now show that analogous partial-film solutions can occur in
curtain flows, with the film covering only part of the cylinder, while other parts (on
the right) remain dry. In this case Q = 0, so that equation (19) yields the solution
h(θ) = 0 for a dry part of the cylinder, as expected, while for a wetted part it yields
the branch-I solution

h(θ) =

(
3

cos θ

)1/2

(49)

(which can be valid only if |θ| < 1
2
π, i.e. on the right-hand side). Evidently (49)

cannot satisfy the required condition that h = 0 at an edge θ = θe of the film,
which is therefore a region of non-uniformity of the present solution. However, near
θ = θe there is a ‘transition solution’ in which dh/dθ is large. As Johnson shows,
in this transition region it is necessary to retain in the lubrication analysis a term
proportional to δ(dh/dθ), to arrive at

Q = h− 1
3
h3(cos θ + δhθ sin θ), (50)

so that equation (19) is replaced by

δ sin θ hθ = f(h, Q)− cos θ, (51)

with f(h, Q) as in (20). With Q = 0 we now set θ = θe + δξ in (51); at leading order
in δ we obtain

δ sin θe hθ = f(h, 0)− cos θe, (52)

to be solved subject to the boundary condition h = 0 at ξ = 0. This leads to the
implicit solution

θ − θe

δ
=
h3

e sin θe

3

(
tanh−1 h

he

− h

he

)
, he =

(
3

cos θe

)1/2

, (53)

valid for any θe satisfying |θe| < 1
2
π. This solution gives h→ (3/ cos θe)

1/2 as sgn(θe)(θ−
θe)/δ → ∞, as required for matching with (49). Also for θ → θe it gives h ∼(
9(θ − θe)/δ sin θe

)1/3
, so that h → 0 and |hθ| → ∞ as θ → θe (i.e. the ‘contact angle’

at θe is 1
2
π). Thus (53) gives a suitable smooth but rapid transition from (49) down to

h = 0 at θ = θe.
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Figure 8. Two examples of curtain flows involving partial films, drawn for the cases (a) QR = 0,
QL = QS = 3

2
, k = 4

9
, δ = 0.1, θe1 = − 1

4
π, θe2 = 1

3
π, and (b) QR = 0, QL = QS = 2, k = 1

3
, δ = 0.025,

θe1 = − 1
3
π, θe2 = 2

5
π.

A uniformly valid composite expansion for h(θ)
(
based on the one-term ‘inner’ and

‘outer’ expansions (53) and (49)
)

is obtained straightforwardly. For example, for a
partial film occupying θ > θe we have

hcomp(θ) =

(
3

cos θ

)1/2

+ he

[
H(η)− 1

]
, η =

3(θ − θe)

δh3
e sin θe

, (54)

with the function H(η) defined by

tanh−1 H −H = η. (55)

In practice there must be two edge positions, θ = θe1 and θ = θe2 say, with
− 1

2
π < θe1 < 0 < θe2 <

1
2
π, the dry portion of the cylinder occupying the interval

θe1 < θ < θe2. The indeterminacy in the solution mentioned above is compounded
here in that the edge positions θe1 and θe2 are apparently otherwise arbitrary; in
particular the two edges need not be symmetrically placed about θ = 0, that is, such
a film need not have top-to-bottom symmetry. Examples of solutions of this sort are
shown in figure 8(a) (with θe1 = − 1

4
π, θe2 = 1

3
π, δ = 0.1, QL = QS = 3

2
and k = 4

9
) and

figure 8(b) (with θe1 = − 1
3
π, θe2 = 2

5
π, δ = 0.025, QL = QS = 2 and k = 1

3
). Note that

the supply flux QS = 2 in figure 8(b) is the same as that in figures 1(b), 6(a) and 6(b).
As is clear from figure 8, regions of rather high curvature are again predicted by

this solution; surface-tension effects might smooth these out locally.

5.3. Jump solutions

As Johnson (1988) found for rimming flows, solutions involving ‘jumps’ from one
branch of an f(h)-curve to another (that is, from one side of the maximum h = hm

to the other) are also possible. Such a jump (a non-uniformity in the lubrication
solution) would again represent a sudden change in the thickness of the film near
some position θ = θj; it can occur only on the right of the flow. Physically we would
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Figure 9. Two examples of jump-solution curtain flows, drawn for the cases (a) QR = 3
5
, QL = 8

5
,

k = 1
15

, and (b) QR = 1
3
, QL = 4

3
, k = 1

3
, with θj1 = − 1

4
π, θj2 = 1

3
π, QS = 1 and δ = 0.1 in both cases.

expect this change in profile to be rapid but smooth, akin to the solution found above
for the region near an edge of a partial film. In the transition region the gradient
of h will become large, so a term in δhθ must again be retained in the lubrication
analysis, leading again to (51). Then with θ = θj + δξ in (51), the equation for h(θ)
that emerges at leading order in δ is

δ sin θj hθ = f(h, Q)− cos θj, (56)

which is to be solved subject to boundary conditions of the form

h→ h− as
θ − θj

δ
→ −∞, h→ h+ as

θ − θj

δ
→ +∞, (57)

where h− and h+ denote the film thicknesses on either side of the transition at θ = θj.
This problem can be solved analytically, but the (implicit) solution is rather unwieldly,
so instead it was solved numerically, and a uniformly valid composite expansion was
then constructed. As in the partial-film case, there must be two jumps of this sort, at
θ = θj1 and θ = θj2, say, with − 1

2
π < θj1 < 0 < θj2 <

1
2
π; again the film need not have

top-to-bottom symmetry. Essentially this profile comprises the solution from branch
II
(
that is, Moffatt’s solution

)
for θj1 < θ < θj2, and the solution from branch III

for θ < θj1 and θ > θj2, connected by transition solutions at θ = θj1 and θ = θj2.
Examples of profiles of this sort are shown in figure 9, drawn for the case QS = 1,
δ = 0.1, θj1 = − 1

4
π and θj2 = 1

3
π, with QR = 3

5
and QL = 8

5
in figure 9(a), and QR = 1

3

and QL = 4
3

in figure 9(b). Again regions of high curvature are predicted.

5.4. The case QR = 2
3

In the case QR = 2
3

there are two different solutions in which the free surface ψ = QR

in (29) is smooth near θ = 0, provided that jumps occur appropriately to allow the
solution to develop a curtain. Specifically, the profile can be h ∼ 1+θ/

√
6 near θ = 0,
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(b)
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π

Figure 10. Two examples of jump-solution curtain flows when QR = 2
3
, drawn for the cases (a)

θj = − 1
3
π and (b) θj = 1

3
π, with QL = 5

3
, QS = 1 and δ = 0.02 in both cases.

with a jump in 0 < θ < 1
2
π, or it can be h ∼ 1 − θ/√6 near θ = 0, with a jump in

− 1
2
π < θ < 0. Examples of these cases (neither of which has top-to-bottom symmetry)

are illustrated in figure 10, with QR = 2
3
, QL = 5

3
, QS = 1 and δ = 0.02, and with

jumps at θj = − 1
3
π and θj = 1

3
π in figures 10(a) and 10(b), respectively.

6. Films of finite thickness (QS = 0)
Finally we consider briefly films of the general type shown in figure 1(a), for which

there is no supply flux (QS = 0) and the thickness h is finite everywhere. This sort of
flow has been studied previously by, for example, Moffatt (1977), Preziosi & Joseph
(1988) and Kelmanson (1995) .

6.1. Full films

Moffatt (1977) considered the case of a full film with no supply flux (QS = 0), with
Q(θ) strictly constant (that is, independent of θ), and with h(θ) continuous (and so
finite) for all θ. This requires 0 6 Q 6 2

3
(and QR = QL = Q), and the solution h(θ) is

given by branch II above. The thickness of such a film decreases monotonically from
a maximum h01 at θ = 0 to a minimum h1 at θ = π. Again the solution is not fully
determinate: for a given rotation rate there is a different solution for each value of Q
(somewhat as in the drag-out problems mentioned in § 3).

The weight per unit length W of fluid on the cylinder (non-dimensionalized with
ρgRL) is

W =

∫ 2π

0

h(θ, Q) dθ, (58)

from which it is found that W increases monotonically with Q. Moffatt was concerned
with the question of maximizing the load W , and he showed that its maximum value
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is Wmax = 4.44272 . . .,† occurring when Q = 2
3
. In this state of maximum flux (Q = 2

3
)

equation (29) gives h ∼ 1 − |θ|/√6 for θ → 0, showing that the free surface has a
corner (see Moffatt 1977, footnote, p. 658, and Preziosi & Joseph 1988). This analysis
of the maximum-supportable load has been extended by Kelmanson (1995) to include
certain higher-order terms.

Note that there are no stagnation points in the flow in Moffatt’s case, since in his
solution h(θ) 6 3

2
Q 6 1 for all θ, whereas the present analysis in § 5.1 shows that for

a stagnation point to occur it is necessary that the film thickness satisfies h >
√

2
somewhere in the flow. We note also that in this case all the fluid in the film flows
counter-clockwise, that is, in the same sense as the cylinder.

6.2. Impossibility of partial films and jump solutions for coating flow

Moffatt’s (1977) full-film finite-thickness solution is valid for both coating flows and
rimming flows. Johnson (1988) showed that, in addition, partial films and jump
solutions are possible for rimming flows (see his figures 1, 6–8 and 11); and we have
shown above that solutions of these types are also possible in curtain flows. It is
of interest to note, however, that such solutions are not possible for coating flows
when the film thickness is everywhere finite, that is, Moffatt’s solution for coating
flow cannot be generalized to include transitions of the type found by Johnson in
rimming flows. As far as lubrication theory is concerned rimming flow and coating
flow are the same, but for the O(δ) theory they are different: the free-surface slope
hθ predicted by (51) is always of the wrong sign to effect a smooth transition from
one h-branch to another in coating flow, but not in rimming flow. For example, at
an edge θ = θe of a partial film, with 0 < θe <

1
2
π (and Q = 0), equation (52) would

imply hθ > 0 (since, as figure 3 shows, f(h, 0) > cos θe); this is impossible for a partial
film in a coating flow. For rimming flow, on the other hand, the term involving δhθ
in (51) and (52) is preceded by a minus sign, and then transition solutions are indeed
possible.

Physically we may reason that in rimming flow the upper edge of a partial film
‘hangs from’ the inside of the cylinder (and locally the flow is rather like that down
the underside of an inclined plane), whereas in coating flow it would ‘sit on’ the
outside of the cylinder (rather like flow down the topside of an inclined plane); it
seems that the gravitational contribution to the pressure gradient that involves hθ can
be balanced in one case but not the other.

Note that for rimming flows, specifying values of Q and of θj or θe determines the
weight W of fluid carried on the cylinder (and this may exceed Moffatt’s ‘maximum’
Wmax for a film with no jumps or edges). However, specifying Q and W does not
determine fully the positions of any jumps or edges in the profile.

7. Summary and discussion
We have considered the steady two-dimensional flow that can ensue when a thin

curtain of viscous fluid is incident on a cylinder rotating about its horizontal axis.
Possible forms of the free surface and of streamline patterns (as predicted by a
lubrication approximation) have been presented. The solution is physically sensible
only in the part of fluid domain near to the cylinder: further away the solution

† In fact, Moffatt gave the slightly inaccurate value Wmax = 4.428. Also note that his footnote (p.

658) should have η = 3
2
− 1

4

√
6|θ|+O(θ2) as θ → 0 (in his notation), corresponding to our equation

(29).
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becomes multi-valued, and must be interpreted with care. In particular a more
detailed analysis of the curtain is needed, to understand the flow pattern therein, and
to allow a matching with the thin film on the cylinder. The present theory predicts
(perhaps surprisingly) that a curtain will buckle in a direction opposite to the rotation
of the cylinder, and so will meet the cylinder right of centre, in the region θc < θ < 1

2
π.

It might have been anticipated that a curtain would buckle in the direction of rotation,
meeting the cylinder left of centre, in 1

2
π < θ < π. However, we have found that this

is a region that seems to be described well by the lubrication analysis, with no hint
that anything other than what is shown in the figures will occur. Thus while there is
certainly scope for improving the analysis to represent the curtain better (particularly
the way that it impinges on the cylinder in the region right of centre, θc < θ < 1

2
π),

it is not clear that such an improved theory could add anything beyond lubrication
theory in the region left of centre ( 1

2
π < θ < π).

We have demonstrated several interesting features in the solutions, for example
that stagnation points can occur in the flow, that solutions exist that do not have
top-to-bottom symmetry, and that free-surface ‘corners’ are predicted for special
parameter values. Also we have shown that in curtain flows the curtain generally
takes a characteristic ‘buckled’ shape, and that in full-film curtain flows there is
always some fluid that is ‘trapped’ near the rotating cylinder, circulating forever with
the cylinder and never escaping as part of the curtain detaching at the bottom; in
some cases all the fluid in the oncoming curtain goes round the left side of the
cylinder, while in other cases some goes round the left side and some round the right
side. In addition we have shown that neither finite-thickness full films involving jumps
nor finite-thickness partial films can occur in the case of coating flows (though they
can occur in rimming flows).

This paper has illustrated just some of the many possible interpretations of the
lubrication solution; others are certainly feasible, but rather than elaborate further on
these possibilities, it may be more profitable now to investigate what sort of solution
would be chosen in practice. A way of tackling this theoretically may be to solve an
initial value problem numerically for an unsteady flow (with the smoothing effect of
surface tension included) to see what type of solution the system evolves towards;
this was the method used by Wilson & Williams (1997) in their study of rimming
flows, revealing the emergence of ‘discontinuities’ (regions of rapid variation) in the
films. The question of the stability of these solutions is also of considerable interest.

Of course, the ultimate vindication of any theory can come only from experimental
verification; we hope that an experimentalist will be stimulated to take up the
challenge of testing some of our predictions!

This work was completed while the second author (S. K. W.) was a Visiting Scholar
in the Department of Engineering Sciences and Applied Mathematics of Northwestern
University, where he was partially supported under a United States Department of
Energy Grant in the Basic Energy Sciences while he was visiting Professor S. G.
Bankoff and Professor S. H. Davis.

Appendix
The solutions hI(θ), hII(θ), . . . , hV(θ) of (19) and (20) on the branches I, II, . . . ,V

(
as

in (23), (24) and (25)
)

may be written down explicitly. Perhaps the simplest forms are
as follows.



48 B. R. Duffy and S. K. Wilson

With

K(θ) := − 3
2
sgn(cos θ)Q

√| cos θ|, (A 1)

we define functions Fi(θ) (i = 1, . . . , 4) by

F1(θ) =
2√

cos θ
cos
(

1
3

cos−1 K(θ)
)
, (A 2)

F2(θ) =
2√

cos θ
cos

(
2π

3
− 1

3
cos−1 K(θ)

)
, (A 3)

F3(θ) =
2√

cos θ
cosh

(
1
3

cosh−1 K(θ)
)
, (A 4)

F4(θ) =
2√| cos θ| sinh

(
1
3

sinh−1 K(θ)
)
. (A 5)

Then for Q 6 0 we have

hI =

{
F1(θ) if 0 6 K 6 1
F3(θ) if K > 1

(A 6)

(defined only for cos θ > 0); for 0 < Q 6 2
3

we have

hII =

{
F2(θ) if cos θ > 0
F4(θ) if cos θ < 0,

(A 7)

and

hIII = F1(θ) (A 8)

(the latter defined only for cos θ > 0); and for Q > 2
3

we have

hIV =

{
F2(θ) if θc 6 |θ| 6 1

2
π

F4(θ) if cos θ < 0,
(A 9)

and

hV = F1(θ) if θc 6 |θ| < 1
2
π, (A 10)

with θc defined as in (22). Figure 4 shows these different branches schematically.
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